New biodegradable pressure sensor could transform the monitoring of high-risk medical conditions

By Catherine Sturman
Engineers at the University of Connecticut have been behind the development of a new biodegradable pressure sensor, which will support the ongoing manag...

Engineers at the University of Connecticut have been behind the development of a new biodegradable pressure sensor, which will support the ongoing management of long-term, high-risk conditions, such as chronic lung disease.

Showcases in UConn’s digital issue, Proceedings of the National Academy of Sciences, the research team have highlighted that the biodegradable sensor has gained the approval of the US Food and Drug Administration (FDA) and the group are now waiting for a patent application be approved.

Now able to be used in a number of surgeries. Its flexible structure will also enable the sensor to become less invasive than traditional sensors, and lower potential risks of infection.

"Medical sensors are often implanted directly into soft tissues and organs. Taking them out can cause additional damage. We knew that if we could develop a sensor that didn't require surgery to take it out, that would be really significant," explained Thanh Duc Nguyen, Assistant Professor of Mechanical and Biomedical Engineering in the Institute of Regenerative Engineering at UConn Health and the Institute of Materials Science.

See also

"We are very excited because this is the first time these biocompatible materials have been used in this way.”

Releasing electrical charges upon the application of pressure (known as the piezoelectric effect), where signals can be analysed by medical professionals, the sensor can also be applied within the areas of tissue regeneration.

"There are many applications for this sensor," observes Nguyen. "Let's say the sensor is implanted in the brain. We can use biodegradable wires and put the accompanying non-degradable electronics far away from the delicate brain tissue, such as under the skin behind the ear, similar to a cochlear implant. Then it would just require a minor treatment to remove the electronics without worrying about the sensor being in direct contact with soft brain tissue."

Share

Featured Articles

Vaccine Breakthrough on Antibiotics Resistant Diseases

As researchers report breakthrough on vaccine against MRSA bacteria, we look at which pharmas are working on vaccines to combat antimicrobial resistance

Oracle Fusion Cloud Update Boost for Patients

Oracle Fusion Cloud SCM includes new Healthcare Marketplace solution to help hospitals & clinics optimise planning, automate processes and improve outcomes

WHO Tightens air Quality Guidelines as Pollution Kills 7mn

World Health Organisation tightens air pollution guidelines to safeguard health; COVID prompts WHO to redefine 'air-borne' as it relates to diseases

WHO Health Chatbot Built on 'Humanised' GenAI

Digital Healthcare

Costco Weight-Loss Drugs Move Highlights US AOM Growth

Medical Devices & Pharma

AstraZeneca Company Profile, as CEO Soriot Lands pay Deal

Medical Devices & Pharma